618 research outputs found

    Correction: In situ analysis of a silver nanoparticle-precipitating Shewanella biofilm by surface enhanced confocal Raman microscopy

    Get PDF
    Correction: In situ analysis of a silver nanoparticle-precipitating Shewanella biofilm by surface enhanced confocal Raman microscop

    Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system

    Get PDF
    Electrical current can be used to supply reducing power to microbial metabolism. This phenomenon is typically studied in pure cultures with added redox mediators to transfer charge. Here, we investigate the development of a current-fed mixed microbial community fermenting glycerol at the cathode of a bioelectrochemical system in the absence of added mediators and identify correlations between microbial diversity and the respective product outcomes. Within 1 week of inoculation, a Citrobacter population represented 95 to 99% of the community and the metabolite profiles were dominated by 1,3-propanediol and ethanol. Over time, the Citrobacter population decreased in abundance while that of a Pectinatus population and the formation of propionate increased. After 6 weeks, several Clostridium populations and the production of valerate increased, which suggests that chain elongation was being performed. Current supply was stopped after 9 weeks and was associated with a decrease in glycerol degradation and alcohol formation. This decrease was reversed by resuming current supply; however, when hydrogen gas was bubbled through the reactor during open-circuit operation (open-circuit potential) as an alternative source of reducing power, glycerol degradation and metabolite production were unaffected. Cyclic voltammetry revealed that the community appeared to catalyze the hydrogen evolution reaction, leading to a +400-mV shift in its onset potential. Our results clearly demonstrate that current supply can alter fermentation profiles; however, further work is needed to determine the mechanisms behind this effect. In addition, operational conditions must be refined to gain greater control over community composition and metabolic outcomes

    Chapter 16 - Cross-cutting investment and finance issues

    Get PDF
    This is the first time an assessment report by the Intergovernmental Panel on Climate Change (IPCC) contains a chapter dedicated to investment and finance to address climate change. This reflects the growing awareness of the relevance of these issues for the design of efficient and effective climate policies

    Casting for a sovereign role:Socialising an aspirant state in the Scottish independence referendum

    Get PDF
    This article examines international reactions to Scotland’s 2014 bid for independence as an instance of socialisation of an aspirant state, what we term ‘pre-socialisation’. Building on and contributing to research on state socialisation and role theory, this study proposes a nexus between roles and sovereignty. This nexus has three components: sovereignty itself is a role casted for by an actor; the sovereign role is entangled with the substantive foreign policy roles the actor might play; and the sovereign role implicates the substantive foreign policy roles of other actors. The Scottish debate on independence provides an effective laboratory to develop and explore these theoretical dimensions of pre-socialisation, revealing the contested value and meaning of sovereignty, the possible roles that an independent Scotland could play, and the projected implications for the role of the UK and other international actors. Our analysis of the Scottish case can provide insights for other cases of pre-socialisation and is more empirically significant following the UK’s 2016 referendum to leave the European Union.PostprintPeer reviewe

    High-Capacity Conductive Nanocellulose Paper Sheets for Electrochemically Controlled Extraction of DNA Oligomers

    Get PDF
    Highly porous polypyrrole (PPy)-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg−1, were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30–50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m2 g−1) of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT)6, (dT)20, and (dT)40 DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules

    Long-term performance of a plant microbial fuel cell with Spartina anglica

    Get PDF
    The plant microbial fuel cell is a sustainable and renewable way of electricity production. The plant is integrated in the anode of the microbial fuel cell which consists of a bed of graphite granules. In the anode, organic compounds deposited by plant roots are oxidized by electrochemically active bacteria. In this research, salt marsh species Spartina anglica generated current for up to 119 days in a plant microbial fuel cell. Maximum power production was 100 mW m−2 geometric anode area, highest reported power output for a plant microbial fuel cell. Cathode overpotential was the main potential loss in the period of oxygen reduction due to slow oxygen reduction kinetics at the cathode. Ferricyanide reduction improved the kinetics at the cathode and increased current generation with a maximum of 254%. In the period of ferricyanide reduction, the main potential loss was transport loss. This research shows potential application of microbial fuel cell technology in salt marshes for bio-energy production with the plant microbial fuel cell
    • …
    corecore